skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gomez, Michael G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biocementation is a biomediated ground improvement method that can improve the engineering behavior of granular soils through the precipitation of calcium carbonate minerals. Although cemented bonds and particle coatings generated from biocementation can enable large increases in soil initial shear stiffness, peak shear strength, and liquefaction resistance; emerging strategies such as soil desaturation have shown the ability of alternative mechanisms to enable large improvements in liquefaction behaviors. This article highlights outcomes from recent experiments which have investigated the potential of novel treatment processes to enable the generation and entrapment of gases within biocementation. We hypothesize that these entrapped gases may provide a secondary mechanism to improve soil undrained shearing behaviors by enabling the release of gases following cemented bond deterioration and related increases in pore fluid compressibility. Our study employs a series of batch experiments to identify new methods to both generate and entrap gasses within an organic polymer layer applied intermittently between biocementation treatments. Biocemented composites resulting from this work may enable large improvements in the environmental and financial efficacy of biocementation and the resilience of treated soils to extreme loading events. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  2. Microbially induced calcite precipitation (MICP) or biocementation is a bio-mediated process that can be used to improve the engineering properties of granular soils through calcium carbonate precipitation. Although most commonly this process is accomplished using microbial urea hydrolysis, other microbial metabolic pathways can be used to enable biocementation with the potential to eliminate ammonium byproducts. Microbial organic acid oxidation presents one alternative pathway by which increases in solution carbonate species can be generated to enable calcium carbonate mineral formation. While past studies have considered the potential of this microbial pathway to enable biocementation for surficial applications, to date few studies have examined the feasibility of this pathway for subsurface applications wherein dissolved oxygen is more limited. In this study, 18 small-scale batch experiments were performed to investigate the ability of microbial organic acid oxidation to enable biocementation soil improvement. Experiments investigated the feasibility of using both acetate and citrate oxidation to mediate biocementation as well as the effect of differences in techniques used to supply dissolved oxygen, the effect of supplied growth factors, bicarbonate salt additions, and solution sampling frequency. Results suggest that aerobic oxidation of acetate and citrate can be used to enable calcium carbonate biocementation, though ensuring dissolved oxygen availability appears to be critical towards enabling this process. 
    more » « less
  3. Microbially Induced Calcite Precipitation (MICP) is a bio-mediated cementation process that uses microbial enzymatic activity to catalyze the precipitation of CaCO3 minerals on soil particle surfaces and contacts. Extensive research has focused on understanding various aspects of MICP-treated soils including soil behavioral enhancements and process reaction chemistry, however, almost no research has explored the permanence of bio-cemented geomaterials. As the technology matures, an improved understanding of the longevity of bio-cementation improved soils will be critical towards identifying favorable field applications, quantifying environmental impacts, and understanding their long-term performance. In this study, a series of batch experiments were performed to investigate the dissolution kinetics of CaCO3-based bio- cemented sands with the specific aim of incorporating these behaviors into geochemical models. All batch experiments involved previously bio-cemented poorly graded sands that were exposed to different dissolution treatments intended to explore the magnitude and rate of CaCO3 dissolution as a function of acid type, concentration, initial pH, and other factors. During experiments, changes in solution pH and calcium concentrations indicative of CaCO3 dissolution were monitored. After experiments, aqueous measurements were compared to those simulated using two different dissolution kinetic frameworks. While not exhaustive, the results of these experiments suggest that the dissolution behavior of bio-cementation can be well-approximated using existing chemically controlled kinetic models, particularly when surrounding solutions are more strongly buffered. 
    more » « less
  4. Abstract Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolytic activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates. 
    more » « less
  5. Numerous laboratory studies in the past decade have demonstrated the ability of microbially induced calcite precipitation (MICP), a bio-mediated soil improvement method, to favorably transform a soil’s engineering properties including increased shear strength and stiffness with reductions in hydraulic conductivity and porosity. Despite significant advances in treatment application techniques and characterization of post-treatment engineering properties, relationships between biogeochemical conditions during precipitation and post-treatment material properties have remained poorly understood. Bacterial augmentation, stimulation, and cementation treatments can vary dramatically in their chemical constituents, concentrations, and ratios between researchers, with specific formulas oftentimes perpetuating despite limited understanding of their engineering implications. In this study, small-scale batch experiments were used to systematically investigate how biogeochemical conditions during precipitate synthesis may influence resulting bio-cementation and related material engineering behaviors. Aqueous solution chemistry was monitored in time to better understand the relationship between the kinetics of ureolysis and calcium carbonate precipitation, and resulting precipitates. Following all experiments, precipitates were evaluated using x-ray diffraction and scanning electron microscopy to characterize mineralogy and morphology. Results obtained from these investigations are expected to help identify the primary chemical and biological factors during synthesis that may control bio-cementation material properties and 
    more » « less